卡塔兰猜想的一个特殊情况的证明
卡塔兰猜想的一个特殊情况的证明
命题:\(x,y\)都是正整数,求证不存在\(x>2,y>3\)使得\(3^x-2^y=\pm 1\)
证:1° \(3^x-2^y = 1\)
\[ 3^x - 2^y = 1\]
\[\because x > 2,y > 3\\\]
\[\therefore 设s = x - 2,t = y - 3(s \ge 1,t \ge 1)\]
\[ 则3^2 \times 3^s - 2^3 \times 2^t = 1\\\]
\[ 9 \times 3^s-8 \times 2^t = 1\]
\[ \therefore 3^s = 1 + 8k,2^t = 1 + 9k (k \in Z)\]
\[ \because s \ge 1,t \ge 1\]
\[ \therefore k \ge 1\]
\[ \because 3^s = 1 + 8k (1)\]
\[ \therefore 3^s \equiv 1 \pmod 8\]
\[ 而当s = 2l(l \in Z)时,3^s \equiv 1 \pmod 8\]
\[\therefore 9^l = 8k + 1\]
\[ 又\because 2^t = 1 + 9k (2)\]
\[ 且当t = 6c (c \in Z)时,2^t \equiv 1 \pmod 9\]
\[ \therefore 64^c = 1 + 9k (3)\]
\[ 由(2),(3),有:\\ \begin{cases} k \equiv 1 \pmod 9 \\ k \equiv 7 \pmod {64}\\ \end{cases}\\ \]
\[所以k \equiv 199 \pmod{576}\]
\[ \therefore 9k + 1 \equiv 76 \pmod {576}\]
\[ 由(3) \\ 则64^c = 576r + 76(r \in Z)\]
\[ \because 64 | 576,64 \nmid 76\]
\[ \therefore 无解。 \]
2° \(3^x - 2^y = -1\)
\[ 3^x - 2^y = -1\]
\[ 2^y - 3^x = 1\]
\[ 令s = y - 3,t = x - 2 \]
\[ 8 \times 2^s - 9 \times 3^t = 1\]
\[ 2^s = 8 + 9k,3^t = 7 + 8k (k\in Z)\]
\[ \because 3^t = 7 + 8k\]
\[ \therefore 3^t \equiv 7 \pmod 8\]
\[ 而3^t除8的余数集合为\{1,3\}\]
\[ \therefore 无解。\]
Q.E.D.
-----2020.1.18 20:50